DIWALIBA POLYTECHNIC, MAHUVA

Mechanical Department

SUBJECT: ENGINEERING PHYSICS (PY0001)

CHAPTER 1 SI UNIT and Measurements

1.	The quantity which has the only magnitude is called
	a) A scalar quantity
	b) A vector quantity
	c) A chemical quantity
	d) A magnitude quantity
2.	The quantity which has the magnitude and direction is called
	a) A scalar quantity
	b) A vector quantity
	c) A chemical quantity
	d) A magnitude quantity
3.	Force is a vector quantity.
	a) True
	b) False
4.	Acceleration is a scalar quantity
	a) True
	b) False
_	
5.	Formula for least count is if,
	a. m = Smallest division on main scale
	b. $n = No.$ of divisions on Vernier scale
	a) m x n
	b) m/n
	c) m + n
	d) $m-n$
6	S.I. Unit of Power is
•	a. Joule
	b. watt
	c. Pascal
	d. Hertz
7.	is a Scalar quantity.
•	a) Velocity
	b) Temperature
	c) Force

d) Acceleration

8.		is a Vector quantity.	
	a)	Velocity	
		Temperature	
		Mass	
	d)	Time	
9.	1 Q	Quintal =Kilogram.	
		a. 10	
		b. 1000	
		c. 0.1	
		d. 100	
10.		rmula of Pressure is:	
		Force x acceleration	
	,	Force x time	
	,	Force/Area	
	u)	Force/ length	
11.	109	is termed as:	
		a. Tera	
		b. Mega	
		c. nano	
		d. Giga	
12.		is not a fundamental quantity.	
		a. Electric Current	
		b. Pressure	
		c. Quantity of Matterd. Mass	
		u. Wass	
13.		$mm^2 = \underline{\qquad} m^2$	
		10-6	
		10 ⁶ 10 ⁻⁷	
		107	
14.		. Unit of length is:	
		Inch	
	b)	Yard	
	c)	metre	
	d)	mile	
15.	S.I	. Unit of surface area is	
		a) m ²	
		b) m ³	
		c) m/s ²	
		d) m^2/s	

16. S.I. Unit of volume is

- $^{a.}$ m^2
- b. m^3
- $^{c.}$ m/s^2
- $d. m^2/s$

17. S.I. Unit of density is

- $a. Kg/m^2$
- $b. m/s^2$
- c. m^2/s
- $^{d.}$ kg/m³

18. S.I. Unit of velocity is

- $a. Kg/m^2$
- b. m/s
- c. m/s^2
- $^{d.}$ kg/m³

19. S.I. Unit of force is

- a. Joule
- b. watt
- c. Pascal
- d. newton

20. S.I. Unit of frequency is

- a. Joule
- b. watt
- c. Hertz
- d. Pascal

21. S.I. Unit of pressure is

- a. Kg/m^2
- b. m/s
- c. N/s^2
- $^{d.}$ N/m^2

22. S.I. Unit of acceleration is

- a. Kg/m^2
- b. m/s
- c. m/s^2
- $^{d.}$ kg/m³

23. Formula of momentum is:

- a) mass x acceleration
- b) mass x velocity
- c) Force/Area
- d) Force/length

24. Formula of work is:
a) mass x acceleration
b) mass x velocity
•
c) Force x Area
d) Force x distance
25. 10 ⁻⁹ is termed as:
a. Tera
b. Mega
c. nano
d. Giga
26. 10 ⁶ is termed as:
a. Tera
b. Mega
c. nano
d. Giga
27. In MKS system, unit of length is
a) inch
b) yard
c) metre
d) mile
28. In MKS system, unit of mass is
a) gram
b) kilogram
c) milligram
d) ton
29. 1 ton =Kilogram.
a. 10
b. 1000
c. 0.1
d. 100
30. In FPS system, unit of mass is
a) gram
b) kilogram
c) milligram
d) pound
31. In FPS system, unit of length is
a) inch
b) yard
c) foot
d) mile

a) hour b) minute c) millisecond d) second 33. In CGS system, unit of mass is a) gram b) kilogram c) milligram d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4 d) 5	32. In FPS system, unit of time is
c) millisecond d) second 33. In CGS system, unit of mass is a) gram b) kilogram c) milligram d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	a) hour
d) second 33. In CGS system, unit of mass is a) gram b) kilogram c) milligram d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	
33. In CGS system, unit of mass is a) gram b) kilogram c) milligram d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	·
a) gram b) kilogram c) milligram d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	d) second
b) kilogram c) milligram d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	33. In CGS system, unit of mass is
c) milligram d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	a) gram
d) pound 34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	b) kilogram
34. In CGS system, unit of length is a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	
a) metre b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	d) pound
b) centimetre c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	34. In CGS system, unit of length is
c) foot d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10-9 b) 10-6 c) 10-3 d) 103 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	a) metre
d) mile 35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	b) centimetre
35. In CGS system, unit of time is a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	
a) hour b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	d) mile
b) minute c) second d) millisecond 36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	35. In CGS system, unit of time is
c) second d) millisecond 36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	a) hour
d) millisecond 36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	b) minute
36. 1 millicurie = curie a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	•
a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	d) millisecond
a) 10 ⁻⁹ b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	
b) 10 ⁻⁶ c) 10 ⁻³ d) 10 ³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	36. 1 millicurie = curie
 c) 10⁻³ d) 10³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4 	a) 10 ⁻⁹
 c) 10⁻³ d) 10³ 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4 	b) 10 ⁻⁶
 37. Water triple point temperature is known as a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4 	
 a) 1 centigrade b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4 	d) 10^3
 b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4 	37. Water triple point temperature is known as
 b) 1 kelvin c) 1 Fahrenheit d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4 	a) 1 centigrade
d) None of above 38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	,
38. Significant numbers of 3.531 is a) 2 b) 3 c) 4	c) 1 Fahrenheit
a) 2 b) 3 c) 4	d) None of above
b) 3 c) 4	38. Significant numbers of 3.531 is
b) 3 c) 4	a) 2
c) 4	
d) 5	
u) c	·

	gnificant numbers of 0.02030 is
a)	1
b)	2
c)	3
d)	4
40. 6.0	07 have 2 significant numbers.
a)	True
b)	False
41. 9.1	x 10 ⁻³¹ have 2 significant numbers.
	True
b)	False
	an experiment to find out Refractive index of glass, observations are 1.36, 1.2 3 then what will be the average refractive index.
a)	1.33
b)	1.35
U)	1.55
,	1.30
c)	
c) d)	1.30
c) d) 43. If 1	1.30 1.29 measured value is closed to true value then accuracy is good.
c) d) 43. If 1	1.30 1.29
c) d) 43. If 1 a) b)	1.30 1.29 measured value is closed to true value then accuracy is good. True
c) d) 43. If 1 a) b)	1.30 1.29 measured value is closed to true value then accuracy is good. True False
c) d) 43. If 1 a) b)	1.30 1.29 measured value is closed to true value then accuracy is good. True False ast count of Vernier calliper's is
c) d) 43. If 1 a) b)	1.30 1.29 measured value is closed to true value then accuracy is good. True False ast count of Vernier calliper's is a. mm b. mm c. mm
c) d) 43. If 1 a) b)	1.30 1.29 measured value is closed to true value then accuracy is good. True False ast count of Vernier calliper's is a. mm b. mm
c) d) 43. If 1 a) b) 44. Lea	1.30 1.29 measured value is closed to true value then accuracy is good. True False ast count of Vernier calliper's is a. mm b. mm c. mm
c) d) 43. If 1 a) b) 44. Lea	1.30 1.29 measured value is closed to true value then accuracy is good. True False ast count of Vernier calliper's is a. mm b. mm c. mm d. mm
c) d) 43. If 1 a) b) 44. Lea	1.30 1.29 measured value is closed to true value then accuracy is good. True False ast count of Vernier calliper's is a. mm b. mm c. mm d. mm
c) d) 43. If 1 a) b) 44. Lea	1.30 1.29 measured value is closed to true value then accuracy is good. True False ast count of Vernier calliper's is a. mm b. mm c. mm d. mm ast count of micrometre screw gauge is a. mm

46. If Vernier scale's zero mark remain at right side of main scale zero mark then it is called positive error.	
a) True	
b) False	
47. If Vernier scale's zero mark remain at left side of main scale zero mark then it is called positive error.	
a) True	
b) False	
48. Temperature is a vector quantity.	
a) True	
b) False	
49. Velocity is a vector quantity	
a) True	

b) False

d) 10⁴

50. 1 cm² = _____ m² a) 10⁻⁶ b) 10⁶ c) 10⁻⁴

Chapter 3

General Properties of Matter

1.	External force is applied on body and body undergoes into deflection, as external
	force removes body regains its original shape this property is called elasticity

- a) True
- b) False
- 2. External force is applied on body and body undergoes into deflection, as external force removes body doesn't regain its original shape this property is called elasticity
- a) True
- b) False
- 3. Force opposing to deflection of body is called
- a) Deforming force
- b) Restoring force
- c) External force
- d) None of above
- 4. Body doesn't regain its original size and shape after force removed is called
- a) Elastic body
- b) Deformed body
- c) Plastic body
- d) None of above
- 5. Body regain its original size and shape after force removed is called
- a) Elastic body
- b) Deformed body
- c) Plastic body
- d) None of above
- 6. Force applied on body causes deformation is called deforming force
- a) True
- b) False
- 7. Force applied on body causes deformation is called restoring force
- a) True
- b) False

8.	Stress equal to
a)	Force/area
,	Force x area
	Mass/area
,	Mass x area
α,	Truss A ureu
9.	Stress defined as resistance offered by material to external force per unit area
a)	True
	False
- /	
10.	SI unit of stress is
a)	$N-s/m^2$
b)	N/m^3
c)	N/m^2
	$N-s/m^3$
,	
11.	Pascal is also a unit of stress
a)	True
b)	False
10	
12.	Types of stress is
a)	Longitudinal stress
	Volume stress
,	Shearing stress
	All of above
u)	All of above
13.	If external force is applied on rod and its length is increased then stress generated is called tension
a)	True
	False
٠,	
14.	If external force is applied on rod and its length is decreased then stress generated is called compression
a)	True
,	False
U)	1 disc

- 15. Tension and compression both are type of longitudinal stressa) Trueb) False
- 16. External force is applied on solid body causes change in its volume then force applied per unit area of that body is called volume stress.
- a) True
- b) False
- 17. Stress and pressure both are same.
- a) True
- b) False
- 18. According to Hooke's law
- a) Stress is inversely proportional to strain
- b) Stress is reciprocal of strain
- c) Stress is directly proportional to strain
- d) None of above
- 19. Young's modulus equal to
- a) Strain/stress
- b) 1/Stress
- c) Stress/strain
- d) 1/strain
- 20. Bulk modulus is equal to
- a) Stress/strain
- b) Longitudinal stress/longitudinal strain
- c) Shearing stress/shearing strain
- d) Volume stress/volume strain
- 21. Modulus of rigidity equal to
- a) Stress/strain
- b) Longitudinal stress/longitudinal strain
- c) Shearing stress/shearing strain
- d) Volume stress/volume strain

22. Poisson's ratio equal to

- a) Stress/strain
- b) Lateral strain/longitudinal strain
- c) shearing strain /Shearing stress
- d) Volume stress/ longitudinal strain

23. Strain equal to

- a) Change in length/original length
- b) original length /Change in length
- c) both (A) & (B)
- d) None of above

24. Volumetric Strain equal to

- a) Change in length/original length
- b) original length /Change in length
- c) both (A) & (B)
- d) Change in volume/original volume

25. Lateral Strain equal to

- a) Change in length/original length
- b) Change in diameter /original diameter
- c) both (A) & (B)
- d) Change in volume/original volume

26. Equation of young modulus from experiment is

- a) $\pi r^2 \Delta l / mgl$
- b) $m \pi r^2/gl \Delta l$
- c) $mgl/\pi r^2 \Delta l$
- d) $m \Delta l/gl \pi r^2$

27. Equation for deflection of beam having weight (W) in the middle is equal to

- a) $WL^3/4bd^3y$
- b) $4bd^3y/WL^3$
- c) $WL^3 y/4bd^3$
- d) $4bd^3/WL^3y$
- 28. Height of mountains are limited because of its
- a) Plasticity
- b) Elasticity
- c) Elastic limit
- d) Plastic limit

29. SI unit of surface tension is
a) N-m
b) N/m
c) m/N
d) None of above
30. Types of molecular force is
a) Cohesive force
b) Adhesive force
c) Both (A) & (B)
d) None of above
31. Force exerted between same molecules is known as cohesive force
a) True
b) False
32. Force exerted between different molecules is known as Adhesive force
a) True
b) False
33. Molecular force exerted between molecules up to certain distance, this distance is called
a) Molecular distance
b) Molecular rangec) Sphere of influence
c) Sphere of influenced) None of above
d) None of above
34. Surface energy per unit area of free surface of stationary liquid is called surface tension of that liquid
a) True
b) False
35. CGS unit of surface tension is
a) Erg/cm ²
b) N/m
c) m/N
d) None of above

3	36. If angle of contact is less than 90°, then
г	a) Liquid wets surface
	b) Liquid doesn't wet surface
	e) No effect on surface
Ċ	None of above
3	37. If angle of contact is greater than 90°, then
г	a) Liquid wets surface
ł	b) Liquid doesn't wet surface
C	c) No effect on surface
C	l) None of above
3	38. Value of angle of contact for water is
г	a) 90°
t	b) 0°
C	c) 17°
C	1) 148°
3	39. Value of angle of contact for alcohol is
г	a) 90°
ŀ	b) 0°
C	e) 17°
C	1) 148°
۷	10. Value of angle of contact for mercury is
г	a) 90°
t	b) 0°
C	c) 17°
C	1) 148°
۷	11. Value of angle of contact for turpentine is
г	a) 90°
ł	o) 0°
C	e) 17°
C	1) 148°

a)	107°
b)	90°
c)	0°
d)	148°
43.	If angle of contact is less than 90°, then
a)	Shape of free surface is concave
b)	Shape of free surface is convex
c)	Both (A) & (B)
d)	None of above
44.	If angle of contact is greater than 90°, then
a)	Shape of free surface is concave
b)	Shape of free surface is convex
c)	Both (A) & (B)
d)	None of above
45.	Formula for surface tension is
a)	rhdg/2 cos⊖
	2cos⊖/ rhdg
	rhd/2g cos⊖
	2g cos⊖/ rhd
46.	Viscosity of water is more than oil
a)	True
b)	
0)	Tuise
47.	Viscosity of honey is greater than water
	, , ,
a)	True
b)	False
48.	SI unit of viscosity is
a)	$N-s/m^2$
b)	centistoke
c)	dyne-s/cm ²

d) poise

42. Value of angle of contact for paraffin is

- 49. Reynold's number is less than 2000, then
- a) Flow is transient
- b) Flow is turbulent
- c) Flow is laminar
- d) None of above
- 50. Reynold's number is greater than 3000, then
- a) Flow is transient
- b) Flow is turbulent
- c) Flow is laminar
- d) None of above

Chapter 5 Semiconductor & Nanotechnology

1.	What does the conductivity of metals depend upon? a) The nature of the material b) Number of free electrons c) Resistance of the metal d) Number of electrons
2.	What happens to the free electrons when an electric field is applied? a. They move randomly and collide with each other b. They move in the direction of the field c. They remain stable d. They move in the direction opposite to that of the field
3.	What are the charge carriers in semiconductors? a) Electrons and holes b) Electrons c) Holes d) Charges
4.	How are charge carriers produced in intrinsic semiconductors? a. By pure atoms b. By electrons c. By impure atoms d. By holes
a) b) c)	What type of material is obtained when an intrinsic semiconductor is doped with pentavalent impurity? N-type semiconductor Extrinsic semiconductor P-type semiconductor Insulator
6.	P-type semiconductor is obtained through doping impurity in an intrinsic semiconductor
b) c)	pentavalent tetravalent trivalent hexavalent

7. N-type semiconductor is obtained through doping impurity in an intrinsic semiconductor	
a) tetravalent	
b) trivalent	
c) hexavalent	
d) pentavalent	
8. What type of material is obtained when an intrinsic semiconductor is doped with trivalent impurity?	
a) Extrinsic semiconductor	
b) Insulator	
c) N-type semiconductor	
d) P-type semiconductor	
9. When does a normal conductor become a superconductor?	
a) At normal temperature	
b) At Curie temperature	
c) At critical temperature	
d) Never	
10. Meissner effect occurs in superconductors due to which of the following properties	?
a) Diamagnetic property	
b) Magnetic property	
c) Paramagnetic property	
d) Ferromagnetic property	
11. Superconductors can be used as a memory or storage elements in computers.a. Trueb. False	
12. What are the major charge carriers in P-type semiconductors? a) Electrons	
b) Protons	
c) Holes	
d) Photons	
a) Thotons	
13. What are the major charge carriers in N-type semiconductors?	
a) Protons	
b) Holes	
c) Photons	
d) Free Electrons	

14. Which type of impurity generated in P-type semiconductor?a) Conductorb) Acceptorc) Donord) Valence
 15. Which type of impurity generated in N-type semiconductor? a) Conductor b) Acceptor c) Donor d) Valence
16. The concentration of doping is kept below a) 1 % b) 5 % c) 10 % d) 50 %
 17. In N-Type semiconductors, which extra energy level is added? a. Conduction level b. Donor Energy Level c. Acceptor energy level d. Valence level
18. Which of the following can be used to create a P-Type Semiconductor? a) P b) Sb c) Ga d) As 19. Which one of the following is not an intrinsic semiconductor? a) Carbon b) Silicon c) Germanium d) Lead
20. P-Type semiconductor has a lower electrical conductivity than N-Type semiconductor. a) True b) False
21. Holes are the majority carries in Intrinsic Semiconductors.a) Trueb) False

 22. In a P-N Junction, the depletion region is reduced when a) P side is connected to the negative side of the terminal b) P side is connected to the positive side of the terminal c) N side is connected to the positive side of the terminal d) Never reduced 	
 23. The voltage at which forward bias current increases rapidly is called as	
24. The resistance of the semiconductor decreases in forward biased.a) Trueb) False	
 25. The current produced in reverse-bias is called as a) Reverse Current b) Breakdown Current c) Negative Current d) Leakage Current 	
26. The leakage current is measured ina) A b) mA c) μA d) nA	
 27. CVD stands for a) Carbon vapour density b) Chemical vapour density c) Chemical vapour deposition d) Carbon vapour deposition 	
 28. CNTs stands for a) Carbon Nanotubes b) Carbon Nanotechnology c) Carbon Nanoscience and technology d) Carbon Nine Technology 	
29. The carbon tubes have high conductivity.a) Trueb) False	

- 30. Which property of Nanomaterials make them suitable to be used for elimination of pollutants?
- a) High purity
- b) Better thermal conductivity
- c) Enhanced chemical activity
- d) Small size
- 31. Which nanomaterial is used for cutting tools?
- a) Fullerene
- b) Aerogel
- c) Tungsten Carbide
- d) Gold
- 32. Valence electrons situated in
- a) Valence band
- b) Conduction band
- c) Forbidden gap
- d) None of above
- 33. Free electrons are situated in
- a) Valence band
- b) Conduction band
- c) Forbidden gap
- d) None of above
- 34. For insulators, conduction band is
- a) Fully filled with free electrons
- b) Partially filled with free electrons
- c) Empty
- d) None of above
- 35. For conductors, conduction band is
- a) Fully filled with free electrons
- b) Partially filled with free electrons
- c) Empty
- d) None of above

- 36. For conductors, valence band is
- a) Partially filled with free electrons at 0 K
- b) Fully filled with free electrons at 0 K
- c) Empty
- d) None of above
- 37. For insulators, valence band is
- a) Partially filled with free electrons at 0 K
- b) Fully filled with free electrons at 0 K
- c) Empty
- d) None of above
- 38. For semiconductors, valence band is
- a) Empty
- b) Partially filled with free electrons at 0 K
- c) Fully filled with free electrons at 0 K
- d) None of above
- 39. Electrical resistivity of conductors is equal to
- a) $10^{-6} \, \Omega m$
- b) $10^{-4} \Omega m$ to $10^3 \Omega m$
- c) $10^3 \Omega m$ to $10^{27} \Omega m$
- d) $10^{-9} \Omega m$ to $10^{-6} \Omega m$
- 40. Electrical resistivity of semiconductor is equal to
- a) $10^{-6} \Omega m$
- b) $10^{-4} \Omega \text{m}$ to $10^3 \Omega \text{m}$
- c) $10^3 \Omega m$ to $10^{27} \Omega m$
- d) $10^{-9} \Omega m$ to $10^{-6} \Omega m$
- 41. Electrical resistivity of insulator is equal to
- a) $10^{-6} \Omega m$
- b) $10^{-4} \Omega m$ to $10^3 \Omega m$
- c) $10^3 \Omega m$ to $10^{27} \Omega m$
- d) $10^{-9} \Omega m$ to $10^{-6} \Omega m$

c) 1 eV d) 0.785 eV
43. Energy gap for insulator is equal or greater than to
a) 1.21 eV b) 5 eV c) 1 eV d) 0.785 eV
44. Energy gap for germanium at 0 K is equal to
 a) 1.21 eV b) 5 eV c) 1 eV d) 0.785 eV
45. Energy gap for silicon at 0 K is equal to
 a) 1.21 eV b) 5 eV c) 1 eV d) 0.785 eV
46. Process of adding impurities in intrinsic semiconductor is called doping
a) Trueb) False
47. Value of critical temperature of mercury is
a) 1.20 K b) 4.22 K c) 7.18 K d) 9.46 K
48. Temperature at which specimen converted into superconductor is known as critical temperature.
a) Trueb) False

42. Energy gap for conductor is equal to

a) 1.21 eVb) 5 eV

- 49. Value of critical temperature of aluminium is
 - a) 1.20 K
 - b) 4.22 K
 - c) 7.18 K
 - d) 9.46 K
- 50. Flux density in superconductor is equal to
 - a) Maximum
 - b) Minimum
 - c) Zero
 - d) None of above